
LKB1 is physiologically required for sleep from
Drosophila melanogaster to the Mus musculus
Ziyi Liu ,1,2,3,4 Lifen Jiang,5 Chaoyi Li,5 Chengang Li,1,2,3,4 Jingqun Yang,1,2,3,4 Jianjun Yu,1,2,3,4 Renbo Mao,1,2,3,4

Yi Rao 1,2,3,4,*

1Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, PKU-IDG/McGovern Institute for
Brain Research, School of Chemistry and Molecular Engineering, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
2Chinese Institute for Brain Research, Beijing, China
3Capital Medical University, Beijing, China
4Changping Laboratory, Beijing, China
5Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, Guangdong, China

*Corresponding author: Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, PKU-IDG/
McGovern Institute for Brain Research, School of Chemistry and Molecular Engineering, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China.
Email: yrao@pku.edu.cn

Abstract

Liver Kinase B1 (LKB1) is known as a master kinase for 14 kinases related to the adenosine monophosphate-activated protein kinase.
Two of them salt inducible kinase 3 and adenosine monophosphate-activated protein kinase a have previously been implicated in sleep
regulation. We generated loss-of-function mutants for Lkb1 in both Drosophila and mice. Sleep, but not circadian rhythms, was reduced
in Lkb1-mutant flies and in flies with neuronal deletion of Lkb1. Genetic interactions between Lkb1 and threonine to alanine mutation at
residue 184 of adenosine monophosphate-activated protein kinase in Drosophila sleep or those between Lkb1 and Threonine to Glutamic
Acid mutation at residue 196 of salt inducible kinase 3 in Drosophila viability have been observed. Sleep was reduced in mice after virally
mediated reduction of Lkb1 in the brain. Electroencephalography analysis showed that nonrapid eye movement sleep and sleep need
were both reduced in Lkb1-mutant mice. These results indicate that liver kinase B1 plays a physiological role in sleep regulation conserved
from flies to mice.
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Introduction
Human Peutz-Jeghers syndrome (PJS) (Peutz 1921; Jeghers et al.
1949) is an autosomal dominant disorder with gastrointestinal (GI)
polyps and increased cancer risk of multiple tissues (Tomlinson
and Houlston 1997; Westerman et al. 1999). The gene mutated in,
and responsible for, PJS encodes the liver kinase B1 (LKB1, also
known as STK11) (Hemminki et al. 1997; 1998; Jenne et al. 1998).
Lkb1 is thus a tumor suppressor gene, mutated in multiple can-
cers, especially the GI (Mehenni et al. 1998; Bardeesy et al. 2002;
Jishage et al. 2002; Miyoshi et al. 2002; Hearle et al. 2006) and lung
adenocarcinoma (Sanchez-Cespedes et al. 2002; Carretero et al.
2004; Ji et al. 2007; Matsumoto et al. 2007; Gill et al. 2011; Skoulidis
et al. 2015), cervical cancer (Wingo et al. 2009), ovarian cancer
(Tanwar et al. 2014), breast cancer (Shen et al. 2002; Hearle et al.
2006; Sengupta et al. 2017), pancreatic cancer (Morton et al. 2010),
and melanoma (Guldberg et al. 1999; Rowan et al. 1999).

LKB1 phosphorylates threonine 172 (T172) of the a subunit of
adenosine monophosphate (AMP)-activated protein kinase
(AMPKa) (Hawley et al. 2003; Hong et al. 2003; Sutherland et al. 2003;
Woods et al. 2003; Lizcano et al. 2004; Shaw et al. 2004, 2005;
Sakamoto et al. 2005), and positively regulates the activity of AMPK.

AMPK is a well-known kinase (Beg et al. 1973; Carlson and Kim
1973; Ingebritsen et al. 1978; Yeh and Kim 1980; Ferrer et al. 1985;
Carling et al. 1987, 1989; Munday et al. 1988) with important physi-
ological and pathological roles (Hardie 2014; Lopez and Dieguez
2014; Hardie et al. 2016; Herzig and Shaw 2018). The a, b, and c
subunits of AMPK form a heterotrimeric complex (Davies et al.
1994; Mitchelhill et al. 1994; Michell et al. 1996). The catalytic a
subunit is regulated by phosphorylation at T172 of AMPKa2 or
T183 of AMPKa1 (Hawley et al. 1996).

There are 12 additional mammalian AMPK-related kinases
(ARKs), similar to the a subunit of AMPK, all regulated at the site
equivalent to AMPK-T172 (Lizcano et al. 2004). LKB1 and its asso-
ciated proteins STE20-related adaptor (STRAD) and mouse pro-
tein 25 (MO25) have been reported to phosphorylate all 14 ARKs
(Lizcano et al. 2004), making LKB1 a master kinase for ARKs
(Lizcano et al. 2004; Alessi et al. 2006; Shackelford and Shaw 2009).
We have recently found that more than 20 kinases in the STE20
family of mammalian serine-threonine kinases could phosphory-
late ARKs in vitro, though the physiological roles of STE20 kinases
in ARK phosphorylation remain unknown (Liu, Wang, Cui, Gao,
et al. 2022; Liu, Wang, Cui, et al. 2022).
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Some ARKs have been reported to regulate sleep. In mice,
inhibitors of AMPK were found to decrease sleep, whereas activa-
tors of AMPK were found to increase sleep (Chikahisa et al. 2009).
In flies, knockdown of AMPKb in neurons decreased the total
amount of sleep and resulted in fragmented sleep (Nagy et al.
2018). Knockdown of AMPKa in a specific pair of neurons sup-
pressed sleep (Yurgel et al. 2019).

Studies in mice have shown that sleep was increased in gain-
of-function (GOF) mutations in the salt inducible kinase (SIK) 3
(Funato et al. 2016), and sleep need was reduced in GOF mutants
of SIK 1, 2, and 3 (Funato et al. 2016; Honda et al. 2018; Park et al.
2020). Sleep was also decreased when SIK3 was downregulated in
flies (Funato et al. 2016). Here we investigated the functional role
of LKB1 in regulating sleep in flies and mice.

Materials and methods
Fly lines and rearing conditions
Flies were reared on standard corn meal at 25!C, 60% humidity
and kept in 12 hours (h) light/12 h dark (LD) conditions. 57C10-
Gal4, nos-phiC31, hs-Cre on X were from the Bloomington Stock
Center. vas-Cas9 was a gift from Dr J. Ni (Tsinghua University,
Beijing). Upstream activation sequence (UAS)-Cas9, UAS-Ampk,
UAS-Ampk-T184A, UAS-Ampk-T184E, Sik3-flag, Sik3–T196A-flag,
and Sik3-T196E-flag flies were from our laboratory.

Flies used in behavioral assays were backcrossed into our iso-
genized Canton S background for 7 generations. All results of
sleep analysis in this paper were obtained from female flies.

Generation of KO, KI, and transgenic lines
Total RNA was extracted from isoCS by TRIzol reagent
(Invitrogen). Using the PrimeScript II 1st Strand cDNA Synthesis
Kit (Takara), we reverse-transcribed the extracted mRNA into
cDNA. The UAS-Lkb1 flies was constructed by inserting the cod-
ing sequence (CDS) of CG9374 amplified from cDNA into the
pACU2 plasmid (a gift from the Jan Lab at UCSF) (Han et al. 2011)
before being inserted into the attP40 site.

The UAS-Lkb1-sgRNA construct was designed by inserting the
sgRNAs into pMt: sgRNA3XEF vectors based on pACU2, with rice
tRNA separating the different sgRNAs. CRISPR-Gold website was
used to design 3 sgRNAs of Lkb1 (Supplementary Fig. 3) (Chu et al.
2016; Poe et al. 2019). The construct was inserted into the attP40
site.

KO and KI lines were generated as described previously (Deng
et al. 2019). Knockout flies were generated with the CRISPR/Cas9
system. Two different sgRNAs were constructed with U6b-sgRNA
plasmids. The 50 homologous arm and the 30 homologous arm of
"2 kb amplified from the wt fly genome were inserted into a
pBSK plasmid for homologous recombination repair. The cassette
of attP-3P3-RFP was introduced in the middle. sgRNA plasmids
and the donor plasmids were injected into vas-Cas9 embryos to
introduce attP-3P3-RFP into the genome at the region of interest
and replaced it by homologous recombination. 3P3-RFP served as
a marker to screen for the correct flies. Primers across the homol-
ogous arms were designed to verify the sequences by PCR and
DNA sequencing. attP site was introduced into the genome with
3P3-RFP-LoxP. For KI files, the nos-phiC31 virgin females were
first crossed with knock-out males and the pBSK plasmid inserted
with attB-T2A-Gal4-miniwhite-LoxP cassette was injected into
the female embryos. Miniwhite serves as a marker to screen
for the correct flies, which could be excised by the Cre/LoxP sys-
tem. Primers were designed to verify the sequence by PCR and
DNA sequencing.

Quantitative PCR
Total RNA was extracted from 30 flies of 5–7 days old by TRIzol
reagent (Invitrogen). The genomic template was removed using
DNase (Takara). cDNA was reverse-transcribed using Takara’s
PrimeScript II 1st Strand cDNA synthesis kit (Takara).
Quantitative PCR was carried out with TransStart Top Green
qPCR SuperMix kit (TransGen) in the Bio-Rad PCR system (CFX96
Touch Deep Well). The sequences of primers used to detect Lkb1
and RP49(endogenous control) mRNA are

Lkb1-F: 50-GCCGTCAAGATCCTGACTA-30

Lkb1-R: 50-CTCCGCTGGACCAGATG-30

Rp49-F: 50-CGACGCTTCAAGGGACAGTATC-30

Rp49-R: 50-TCCGACCAGGTTACAAGAACTCTC-30

Drosophila sleep analysis
Drosophila sleep analysis was performed as described previously
(Qian et al. 2017; Dai et al. 2019). 5–7 days old flies were placed in a
65 mm# 5 mm clear glass tube with one end containing food and
the other end plugging with cotton. All flies were recorded by
video-cameras. Before sleep measurement, flies were entrained
to an LD cycle at 25!C, 60% humidity for at least 2 days, and infra-
red LED light was used to ensure constant illumination when
lights off. Immobility longer than 5 min was defined as one sleep
event (Hendricks et al. 2000; Shaw et al. 2000). Information of fly
location was tracked and sleep parameters were analyzed using
Matlab (Mathworks), from which dead flies were removed. Sleep
duration, sleep bout duration, sleep bout number, and sleep la-
tency for each LD were analyzed. Each experiment was repeated
at least 3 times.

Drosophila circadian analysis
Flies were reared and recorded in the same condition as sleep as-
say as described in papers from our laboratory (Qian et al. 2017;
Dai et al. 2021), except that the condition was constant darkness.
Six to 8 days activity was measured and calculated in ActogramJ
(Klarsfeld et al. 2003). Rhythmic strength, power and period were
calculated by Chi-square method.

Immunoblot analysis
Mouse brains were quickly dissected and washed with phosphate
buffer saline on ice. Lysis buffer (20 mM HEPES, 10 mM KCl,
1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, freshly sup-
plemented with a protease and phosphatase inhibitors cocktail)
were used to homogenize brains by homogenizer (Wiggens, D-500
pro) at 4!C. Brain homogenates were centrifuged at 14,000 revolu-
tion per minutes for 15 min at 4!C. The supernatant was trans-
ferred to a new microtube and quantified with bicinchoninic acid
assay (Thermo Fisher, 23225). The supernatant was analyzed by
SDS-PAGE and proteins were transferred to a nitrocellulose mem-
brane (GE Healthcare, #BA85). Membranes were incubated for 1 h
in a blocking solution (tris-buffered saline containing 0.1%
Tween-20, 5% milk). Primary antibodies were anti-LKB1 (cell sig-
naling, #3047) and anti-ACTIN (Santa Cruz, sc-8342).

Retro-orbital injection in mice
Mice were reared at controlled temperature and humidity
conditions with 12 h light/12 h dark cycle. Food and water were
provided ad libitum. Lkb1fl/fl mice were from the Jackson
Laboratory (JAX #014143). They contained loxP sites flanking
exons 3–6 of Lkb1 gene (Nakada et al. 2010). adeno-associated vi-
ral (AAV)-PHP.eB-hSyn-Cre-green fluorescent protein (GFP) and
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AAV-PHP.eB-hSyn-GFP virus were from Chinese Institute for
Brain Research, Beijing. All results of sleep analysis in this paper
were obtained from female mice.

Total 0.2 ml/10 g avertin was injected intraperitoneally into
the mice for anesthetization. Rodent eyes were protruded by gen-
tle downward pressure to the skin on the dorsal and ventral sides
of the eye. The operator inserted the needle beveled downward
into the retro-orbital sinus at the medial corner of the eye
(Yardeni et al. 2011). The AAV-PHP.eB virus was injected for whole
brain infection (Chan et al. 2017).

Mouse sleep analysis
Mouse sleep analysis was described in a previous article from our
laboratory (Zhang et al. 2018). Eight-week-old mice were selected
for retro-orbital injection. One week after viral injection, EEG and
EMG electrode implantation procedures were performed. Mice
were allowed to recover for more than 5 days individually and
placed in a recording cage and tethered to an omni-directional
arm (RWD Life Science Inc.) with connection cable for 2 days of
habituation before recording. EEG and EMG data were recorded
with custom software at a sampling frequency of 200 Hz for 2
consecutive days to analyze sleep/wake behavior under baseline
conditions. The recording chamber was maintained at 12 h LD cy-
cle and controlled temperature (24–25!C). EEG/EMG data were
initially processed by Accusleep (Barger et al. 2019) before manual
correction in SleepSign to improve accuracy. WAKE was scored
as high amplitude and variable EMG and fast and low amplitude
EEG. Nonrapid eye movement (NREM) was scored as high ampli-
tude d (1–4 Hz) frequency EEG and low EMG tonus. REM was
scored as a complete silent of EMG signals and low amplitude
high frequency h (6–9 Hz)-dominated EEG signal.

For power spectrum analysis, EEG was subjected to fast
Fourier transform analysis with a Hamming window method by
SleepSign, yielding power spectra between 0 and 25 Hz with a
0.39 Hz bin resolution. Epochs containing movement artifacts
were marked, included in sleep duration analysis but excluded
from the power spectra analysis. Power spectra for each vigilance
state represents the mean power distribution of this state during
a 24-h baseline recording. The d-power density of NREMs per
hour represents the average of d-power density as a percentage
of d-band power (1–4 Hz) to total power (0–25 Hz) for each NREM
epoch contained in an hour.

Statistics
All statistical analyses were performed with Prism 7 (GraphPad
Software). Differences in means between samples larger than 2
groups were analyzed using ordinary 1-way ANOVA. Unpaired t
test was used for 2 groups comparison. Power spectrum between
different lines was compared by 2-way ANOVA followed by
Turkey’s multiple comparisons test. n.s. denotes P > 0.05; *P
< 0.05; **P < 0.01; and ***P < 0.001 for all statistical results in this
paper.

Results
Sleep phenotypes of Drosophila Lkb1 mutants
Null mutants for Lkb1 are lethal in Drosophila (Martin and St
Johnston 2003). We had generated a Lkb1 knockout (“lkb1T1”) line
(Supplementary Figs. 1a and 3b) and found that lkb1T1/T1 muta-
tion was lethal in the pupa stage. The level of Lkb1 mRNA was re-
duced in the heterozygous lkb1T1/þ flies (Supplementary Fig. 1b).
We then tested whether the heterozygous lkb1T1 had any pheno-
type in sleep using flies kept in 12 hours (h) light/12 h dark (LD)

cycles (Supplementary Fig. 1c). While lkb1T1/þ flies were not sig-
nificantly different from the wild-type (wt) flies in sleep bout
numbers (Supplementary Fig. 1e), or daytime sleep duration
(Supplementary Fig. 1d), daytime sleep bout duration
(Supplementary Fig. 1f), lkb1T1/þ flies showed significantly lower
nighttime sleep duration (Supplementary Fig. 1d), nighttime
sleep bout duration (Supplementary Fig. 1f), and longer latency to
sleep (Supplementary Fig. 1g). Thus, there was dosage-sensitive
physiological requirement of Lkb1 in nighttime sleep.

We tried to, and succeeded in, generating lkb1T2, a hypomor-
phic mutation for Lkb1 in flies (Fig. 1a; Supplementary Fig. 3, a
and b). Lkb1 mRNA was significantly reduced in lkb1T2/þ and
lkb1T2/T2 flies (Fig. 1b). During the day, lkb1T2/T2 flies were not sig-
nificantly different from the lkb1T2/þ and wt flies in sleep dura-
tion (Fig. 1, c and d), sleep bout number (Fig. 1e), sleep bout
duration (Fig. 1f), or latency to sleep (Fig. 1g). During the night,
not only lkb1T2/T2 flies showed significantly reduced sleep dura-
tion (Fig. 1, c and d), highly reduced sleep bout duration (Fig. 1f)
and highly increased latency (Fig. 1g) than the wt flies, but also
the heterozygous lkb1T2/þ flies were significantly different from
the wt flies in all these parameters (Fig. 1, c–g), indicating a dos-
age sensitive requirement for Lkb1.

We examined the phenotypes of lkb1T1/T2. Consistent with the
lkb1T2/T2, the mRNA levels of Lkb1 were significantly reduced in
lkb1T1/T2 compared with wt, lkb1T1/þ and lkb1T2/þ, and even lower
than that in lkb1T2/T2 (Supplementary Fig. 2a).

The sleep phenotype in lkb1T1/T2 flies was also consistent with
lkb1T2/T2, with highly reduced nighttime sleep duration
(Supplementary Fig. 2, b and c), highly reduced sleep bout dura-
tion (Supplementary Fig. 2e) and highly increased latency to sleep
(Supplementary Fig. 2f), when compared with wt, lkb1T1/þ, and
lkb1T2/þ flies.

Results of sleep analysis of lkb1T1/þ, lkb1T2/þ, lkb1T2/T2, and
lkb1T1/T2 mutant flies all consistently support that Lkb1 plays a
physiological role in promoting sleep.

Rescue of sleep phenotypes by Lkb1 in flies
We inserted the sequence of the yeast transcription factor Gal4
into the lkb1T2 mutant flies, flanking the lkb1 promoter, and
obtained lkb1T2-Gal4 flies (Fig. 2a). We also generated UAS-Lkb1
flies in which the Lkb1 CDS was expressed under the control of
the UAS (Brand and Perrimon 1993). Because Gal4 protein binds
to the UAS, the expression of Lkb1 in flies resulting from the
crosses between lkb1T2-Gal4 flies and UAS-Lkb1 flies would be
under the control of the endogenous Lkb1 promoter. Indeed, ex-
pression of Lkb1 mRNA was restored when lkb1T2-Gal4 and UAS-
Lkb1 were present in the same flies (Fig. 2b), whereas Lkb1 mRNA
was less in wt flies. UAS-Lkb1; lkb1T2/T2 mutant flies, and lkb1T2-
Gal4/lkb1T2-Gal4 flies than that in the wt. UAS-Lkb1 alone could
not restore Lkb1 mRNA expression level to that in wt flies
(Fig. 2b).

Both daytime and nighttime sleep durations were less in
lkb1T2-Gal4/lkb1T2-Gal4 flies than those in wt flies (Fig. 2c).
Introduction of UAS-Lkb1 in lkb1T2/T2 flies or lkb1T2-Gal4 alone
could not restore sleep. When both lkb1T2-Gal4 and UAS-Lkb1
were present, nighttime sleep durations were restored (Fig. 2d).
Nighttime sleep bout number, nighttime sleep bout duration, and
nighttime latency were restored when both lkb1T2-Gal4 and UAS-
Lkb1 were present, but not when lkb1T2-Gal4 or UAS-Lkb1 alone
was present (Fig. 2, e–g).

These results support that the sleep phenotypes of lkb1T2/T2

were attributable to the reduction of Lkb1 mRNA expression in
these flies.
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Sleep phenotypes of flies carrying neuronal
deletion of the Lkb1 gene
To determine whether Lkb1 functions in neurons, we used the
CRISPR-Cas9 system to delete Lkb1 from neurons specifically
(Supplementary Fig. 4). A pan-neuronal Gal4 driver (57C10-Gal4)
was used to control the expression of small guide RNA (sgRNA)
targetting Lkb1 in neurons. Compared with 57C10-Gal4>UAS-
Cas9 alone or 57C10-Gal4>UAS-Lkb1-sgRNA alone, when both
UAS-Cas9 and UAS-Lkb1-sgRNA were present in flies, nighttime
sleep duration (Fig. 3b) and nighttime sleep bout duration
(Fig. 3d) were significantly reduced and nighttime sleep latency
significantly lengthened (Fig. 3e). Daytime sleep duration, bout

number, bout duration and latency were not significantly af-
fected by neuronal gene targeting of Lkb1 (Fig. 3, b–e).

We also investigated any potential effect that overexpression of
Lkb1 in neurons might cause (Supplementary Fig. 5a). We detected
no phenotype resulting from neuronal overexpression of Lkb1 on
daytime and nighttime sleep duration, sleep bout number, sleep
bout duration, or latency (Supplementary Fig. 5, b–f).

In all 3 series of experiments (Figs. 1–3), nighttime sleep phe-
notypes were more obvious than daytime sleep phenotypes.
These results strongly indicate that Lkb1 expression in
neurons are required physiologically for sleep, especially night-
time sleep.
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Fig. 1. Sleep phenotypes of Lkb1 knock-down mutant flies. a) A diagram illustrating the Lkb1 insertion mutant lkb1T2. b) Relative Lkb1 mRNA levels
in lkb1T2/T2 (red), lkb1T2/þ (blue), and wt (black) flies. c) Sleep profiles of lkb1T2/T2 (red, n¼42), lkb1T2/þ (blue, n¼ 44), and wt (black, n¼ 44) flies in a
12 h light/12 h dark (LD) cycle. Statistical analysis of sleep duration, sleep bout number, sleep bout duration, and latency to sleep in lkb1T2/T2 (red,
n¼ 42), lkb1T2/þ (blue, n¼ 44), and wt (black, n¼ 44) flies. Open bars denote daytime, filled bars denote nighttime. d) Sleep duration. Nighttime sleep
durations of lkb1T2/T2 mutants were significantly less than those in lkb1T2/þ and wt flies. e) Sleep bout number. Daytime sleep bout number of lkb1T2/T2

mutants was less than that of wt flies. f) Sleep bout duration. Nighttime sleep bout duration of lkb1T2/T2 mutants was significantly less than those of
lkb1T2/þ and wt flies. g) Latency to sleep. Latency to sleep after light-off of lkb1T2/T2 mutants was significantly prolonged than lkb1T2/þ and wt flies. One-
way ANOVA was used. n.s. denotes P >0.05, *P < 0.05, **P < 0.01, ***P <0.001. Error bars represent standard error of the mean (SEM).
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Genetic interactions between Lkb1 and Ampk or
Sik3 in flies
To examine potential genetic interactions of Lkb1 with either
Ampk or Sik3, we combined the loss-of-function (LOF) Lkb1 muta-
tion lkb1T2 with specific point mutations in either Ampk or Sik3.

The regulatory site T184 in Drosophila AMPK and T196 in
Drosophila SIK3 were equivalent to T172 of mammalian AMPK2
and T221 of mammalian SIK3, important for their activities.
When the endogenous T184 in fly AMPK was mutated to alanine
(A) or glutamic acid (E), flies were lethal. We therefore introduced
T184A and T184E mutations into an Ampk transgene whose ex-
pression was controlled by UAS. We introduced UAS-Ampk, UAS-
Ampk-T184A, and UAS-Ampk-T184E into lkb1T2/T2 flies and used
a pan-neuronal driver to express them in neurons (Fig. 4).
Neuronal overexpression of Ampk-T184E (Fig. 4a) and UAS-Ampk
(Fig. 4c) in lkb1T2 flies did not significantly change the sleep
phenotypes of lkb1T2/T2 flies, but neuronal overexpression of

UAS-Ampk-T184A (Fig. 4b) in lkb1T2/T2 flies further decreased
nighttime sleep duration.

Point mutations of Sik3-flag, Sik3-T196A-flag, and Sik3-T196E-
flag were constructed in Drosophila. When the endogenous T196
in Sik3 was mutated to A or E, we could get homozygous flies.
Upon crossing to lkb1T2/T2, Sik3-T196A-flag; lkb1T2/T2 were homo-
zygous lethal. The cross of Sik3-T196E-flag into the lkb1T2/T2

background generated viable flies, with no detectable change in
sleep (Fig. 5).

Allele-specific genetic interactions between Lkb1 and Ampk in
sleep, or between Lkb1 and Sik3 in viability, suggest, but do not
prove, regulatory relationships between Lkb1 and Ampk in sleep
or Sik3 in viability.

Circadian rhythm in Lkb1 mutant flies
The transcription factor differentiated embryo-chondrocyte 1
regulates circadian rhythm and can negatively regulate the
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Fig. 2. Rescue of sleep loss in lkb1T2/T2 by Lkb1. a) A diagram of lkb1T2-Gal4: a cDNA for the yeast Gal4 gene inserted in the lkb1T2 knockdown mutants.
b) Relative Lkb1 mRNA levels in lkb1T2-Gal4 (blue), UAS-Lkb1; lkb1T2-Gal4 (red), UAS-Lkb1; lkb1T2 (yellow), and wt (black) flies. In lkb1T2-Gal4
homozygous flies, UAS-Lkb1 cDNA driven by Gal4 to rescue sleep phenotypes of lkb1 knockdown mutants. c) Sleep profiles of UAS-Lkb1; lkb1T2-Gal4
(red, n¼ 45), UAS-Lkb1; lkb1T2 (yellow, n¼47), lkb1T2-Gal4 (blue, n¼ 46), and wt (black, n¼ 36) flies. Statistical analysis of sleep duration, sleep bout
number, sleep bout duration and latency to sleep in UAS-Lkb1; lkb1T2-Gal4 (red, n¼ 45), UAS-Lkb1; lkb1T2 (yellow, n¼ 47), lkb1T2-Gal4 (blue, n¼ 46), and
wt (black, n¼ 36) flies. Open bars denote daytime, filled bars nighttime. d) Sleep duration. Nighttime sleep duration of UAS-Lkb1; lkb1T2-Gal4 was similar
to that of wt mutants, both significantly higher than UAS-Lkb1; lkb1T2 and lkb1T2/T2-Gal4 flies. e) Sleep bout number. Nighttime sleep bout number of
UAS-Lkb1; lkb1T2-Gal4 was similar to the wt but significantly higher than UAS-Lkb1; lkb1T2 and lkb1T2-Gal4 flies. f) Sleep bout duration. Nighttime sleep
bout duration of UAS-Lkb1; lkb1T2-Gal4 was similar to the wt but significantly higher than UAS-Lkb1; lkb1T2 and lkb1T2-Gal4 flies. g) Latency to sleep.
Latency after light-off of UAS-Lkb1; lkb1T2-Gal4 was similar to the wt but significantly shorter than UAS-Lkb1; lkb1T2 and lkb1T2-Gal4 flies. One-way
ANOVA was used. n.s. denotes P > 0.05, * P < 0.05, ** P <0.01, ***P < 0.001. Error bars represent SEM.
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transcription of Lkb1 and subsequently reduce AMPK activity
(Sato et al. 2015).

We tested whether the circadian rhythm was affected in Lkb1
mutant flies. Lkb1 mutant flies were not different from wt flies in
period length (Supplementary Fig. 7b). Relative rhythmic power
was increased in lkb1T2/þ and lkb1T2/T2 mutants than wt flies
(Supplementary Fig. 7).

Sleep phenotypes in Lkb1 conditional knockout
mice
To investigate potential involvement of Lkb1 in regulating sleep
of mammalian animals, we obtained Lkb1fl/fl mice in which the
loxP sites flanked exons 3–6 of the Lkb1 gene (Nakada et al. 2010).
To delete the Lkb1 gene from these mice, we injected AAV con-
structs expressing either the Cre recombinase together with the
GFP or GFP alone to infect the mouse brain. Cre-GFP or GFP was
under the control of a neuronal specific promoter human
Synapsin I (hSyn) (in AAV-PHP.eB-hSyn-Cre-GFP or AAV-PHP.eB-
hSyn-GFP).

We analyzed the expression of LKB1 protein in mice (Fig. 6, a
and b). Injection of Cre-GFP expressing virus into wt or Lkb1fl/þ

mice did not reduce LKB1 protein expression in the brain. Neither
did injection of only GFP expressing virus into Lkb1fl/fl mice. This
conclusion was reached by examination of either several mouse
brains combined (Fig. 6a), or individual mouse brains (Fig. 6b).

Functionally, only when the Cre-GFP expressing virus was
injected into Lkb1fl/fl mice, wake duration was significantly in-
creased during daytime (Fig. 6c; Supplementary Fig. 6a), NREM
sleep duration was significantly decreased during daytime
(Fig. 6e; Supplementary Fig. 6b). Controls (Cre-GFP injection into
wt or Lkb1fl/þ mice, GFP injection into Lkb1fl/fl mice) did not sig-
nificantly changed any sleep phenotypes.

REM sleep duration was not significantly affected by Cre-GFP
injection into Lkb1fl/fl mice (Fig. 6g; Supplementary Fig. 6c).

Power density in the 1–4 Hz range (d power density) of NREM is
a commonly accepted indicator of sleep need (Borbely et al. 1981;
Borbely 1982; Daan et al. 1984; Tobler and Borbely 1986; Dijk et al.
1987; Werth et al. 1996; Franken et al. 2001). We found that NREM
d power density was significantly reduced when the Cre-GFP
expressing virus was injected into Lkb1fl/fl mice (Fig. 6f). Analysis
over 24 h indicated that significant reduction was observed over
most of the daily cycle (Fig. 6i).

Discussion
Our results indicate that LKB1 is required for sleep regulation: it
plays an important and conserved role by promoting sleep in
both flies and mice. LKB1 plays this role in neurons in both spe-
cies because gene targeting of Lkb1 in neurons led to reduction of
sleep. In mice, with the additional advantage of EEG analysis, we
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Fig. 3. Sleep phenotypes of mutants from whose neurons Lkb1 was targeted. a) Sleep profiles of UAS-Lkb1-sgRNA/57C10-Gal4;þ/UAS-Cas9 (red, n¼ 44),
UAS-Lkb1-sgRNA/57C10-Gal4 (blue, n¼ 41), and 57C10-Gal4/þ;þ/UAS-Cas9 (black, n¼45) flies. Statistical analysis of sleep duration, sleep bout number,
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from that of UAS-Lkb1-sgRNA/57C10-Gal4 flies. One-way ANOVA was used. n.s. denotes P > 0.05, *P < 0.05, **P <0.01, ***P < 0.001. Error bars represent
SEM.
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find that LKB1 regulates sleep need as indicated by reduced
NREM d power density in Lkb1 knockdown mutant mice.

Sleep is important for animals. Sleep regulation is accomplished
through 2 processes: circadian and sleep homeostatic (Borbely 1982;
Borbely et al. 2016). The circadian clock regulates the timing of sleep,
and homeostatic process regulates the sleep drive. Molecular mech-
anisms of the circadian clock have been revealed through research
in Drosophila and other organisms (Hendricks et al. 2000; Shaw et al.
2000; Nitabach and Taghert 2008; Allada and Chung 2010; Mohawk
et al. 2012). Although many sleep-related genes have been identified
in sleep regulation (Cirelli 2009; Allada et al. 2017; Jan et al. 2020), our
understanding of the mechanisms underlying sleep homeostatic
regulation remains limited (Allada et al. 2017; Donlea et al. 2017).

Multiple regions in Drosophila and mouse brains have been im-
plicated in sleep regulation. In flies, sleep is regulated by several
regions including: the ILNv and DN1 clock neurons which are im-
portant for circadian control of sleep (Parisky et al. 2008; Shang
et al. 2008; Sheeba et al. 2008; Chung et al. 2009; Shang et al. 2013;
Kunst et al. 2014). And the mushroom bodies, the dorsal of fan-
shaped body, the ellipsoid body, the pars intercerebralis, and glia
(Joiner et al. 2006; Foltenyi et al. 2007; Crocker et al. 2010;
Donlea et al. 2011; Guo et al. 2011; Seugnet et al. 2011; Liu et al.
2012; Ueno et al. 2012; Yi et al. 2013; Donlea et al. 2014; Park et al.
2014; Chen et al. 2015; Liu et al. 2016; Pimentel et al. 2016). In
mammals, sleep is regulated by monoaminergic, cholinergic, glu-
tamatergic, and GABAergic neurons that are distributed in
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**P < 0.01, ***P < 0.001. Error bars represent SEM.
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multiple regions including the brain stem, the preoptic hypothal-
amus, the lateral hypothalamus, and the basal forebrain (Weber
and Dan 2016; Saper and Fuller 2017; Scammell et al. 2017). It will
be interesting to investigate whether Lkb1 functions in all or a
limited subset of neurons to regulate sleep.

Lkb1 as a master kinase can regulate the activities of ARKs by
phosphorylating the site in the active T loop equivalent to AMPK-
T172 (Lizcano et al. 2004). Because both AMPK and SIK3 are involved
in sleep regulation, it will be interesting to investigate downstream
kinases mediating the function of Lkb1 in sleep regulation. Is it
SIK3, AMPK, or other members of the ARKs? Our findings of allele-
specific genetic interactions between Lkb1 and Ampk suggest that
they could be upstream and downstream of each other in

regulating sleep. Because of the lethality of double mutation combi-
nation of Sik3 and lkb1, we cannot rule out that Sik3 may also be
downstream of Lkb1 in regulating Drosophila sleep. The Ca2þ/cal-
modulin-dependent protein kinase kinase-2 (CaMKK2, also known
as CaMKKb) could phosphorylate AMPKa-T172 (Hawley et al. 2005;
Hurley et al. 2005; Woods et al. 2005; Anderson et al. 2008), but
CaMKK2 could not phosphorylate the equivalent sites in the other
ARKs, including SIK3 (Fogarty et al. 2010). It will be interesting to in-
vestigate whether and how CaMKK2 regulates sleep.

In Drosophila, LKB1 functions through SIK3 which phosphory-
lates histone deacetylase 4 (HDAC4) to regulate lipid storage
(Choi et al. 2015). It will be interesting to investigate whether
HDAC4 is downstream of LKB1 in sleep regulation.
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More importantly, an important question for further studies is
whether Lkb1 regulation of sleep is related to its regulation of
metabolism. Changes in energy homeostasis directly and revers-
ibly influence the sleep/wake cycle (Collet et al. 2016). Some mole-
cules involved in metabolism regulate sleep (Taheri et al. 2004;
Bjorness and Greene 2009; Thimgan et al. 2010; Gerstner et al.
2011; Nixon et al. 2015; Grubbs et al. 2020). In Drosophila, starvation
suppresses sleep without building up sleep drive (Thimgan et al.
2010). Lkb1 and its downstream components are involved in reg-
ulating metabolism, with examples such as LKB1-AMPK signaling
in the liver regulating glucose homeostasis (Shaw et al. 2005),
SIK3-HDAC4 regulating energy balance in Drosophila (Wang et al.
2011). Either LKB1 has 2 independent roles in sleep and metabo-
lism or that its 2 roles are related.

Our recent in vitro biochemical discoveries of STE20 phos-
phorylation of AMPK and SIK3 (and other ARKs) raise more ques-
tions about physiological significance of any STE20 or any other
ARK in sleep (Liu, Wang, Cui, Gao, et al. 2022; Liu, Wang, Cui, et al.
2022).

Data availability
Strains and plasmids are available upon request. All data neces-
sary for confirming the conclusions of the article are present
within the article and its supplementary data.

Supplemental material is available at GENETICS online.
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